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Random lasing in strongly disordered medium
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Using the time-dependent theory, we calculate the random-laser emission spectra in a two-dimensional
strongly disordered medium. The calculation results show that in low dimensional systems, such as thin-
film disordered media and planar waveguides, the larger the difference of the refractive indices between the
scattering and background media, the smaller the lasing threshold. We also reveal the existence of multi-
mode survival and mode competition. We experimentally obtain the emission spectra of a dye solution
with Al particles doped at different pumping energies, and the experimental results agree well with the
calculated ones.
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In 1968, Letokhov first calculated the optical properties
of a disordered medium and predicted the possibility of
random lasing in disordered systems with gain. Since
then, the random-laser action has been widely studied.
Numerous theoretical[1−9] and experimental[10−18] inves-
tigations on random lasers have been made. Lawandy et

al. discovered random emission in colloidal solutions in
1994[10]. Then, Cao et al. observed the stimulated emis-
sion phenomenon in ZnO powders[11]. With the discovery
of random lasers, many theoretical explanations for such
laser phenomenon have been proposed, mainly including
the diffusion equation with gain[2,17]. Anderson localized
model, and time-dependent theory[3,19]. Letokhov estab-
lished the diffusion equations with gain and successfully
explained the exponential growth of photon energy den-
sity. Jiang et al. proposed the time-dependent theory us-
ing the finite-difference time domain (FDTD) algorithm
to solve rate and Maxwell’s equations numerically[3]. Us-
ing the time-dependent theory, we intuitively and com-
prehensively investigated the coherent feedback proper-
ties of random emission[20,21].

In this letter, using the time-dependent theory, we cal-
culated the dependence of random lasing on the refractive
indices of the scattering media. The calculation results
show that when the pumping energy is relatively small,
the peak intensity of the output spectrum changes slowly
with the pumping energy and the full-width at half max-
imum (FWHM) is relatively large. When the pumping
energy is increased to a certain value, the peak intensity
exhibits exponential growth and the FWHM rapidly de-
creases. When the pumping energy is further increased,
the peak intensity and FWHM reach and maintain cer-
tain values. Thus, in low dimensional systems, the larger
the difference of the refractive indices of the scattering
and background media, the smaller the lasing thresh-
old. Moreover, we observed that the number of peaks
in the emission spectrum increased as the pumping en-
ergy increased. These peaks appear at different locations
and pumping energies, indicating mode competition. To
confirm our theoretical predictions, we performed an ex-

periment, where we chose the Al particles as the scat-
tering medium and the Rhodamine-6G (Rh6G) as gain
medium[22]. The scattering cross section of Al particles
and the module of the refractive index of the Al parti-
cles are relatively large. We mixed moderate Al particles
into the Rh6G solution constituting the sample and then
obtained the emission spectra at different pumping en-
ergies. The measured results agree with the calculated
results.

In this letter, the system is considered a two-
dimensional (2D) square disorder medium of size L2

made of circular particles with radius r, refractive in-
dex n2, and surface filling fraction Φ. These particles
are randomly distributed in a background medium with
refractive index n1. The surface-filling fraction is defined
as the ratio of the total area of particles and the area of
the random system.

The background medium is chosen as the active part
of the system and modeled as a four-level atomic system.
Rate and Maxwell’s equations are used to describe the
time evolution of the atomic populations and field, re-
spectively. To model an open system, we used perfectly
matched layer absorption conditions[23]. In this simula-
tion, the parameters are n1=1, L=2 µm, r=60 nm, and
Φ=0.3.

Two kinds of electromagnetic waves exist, namely, TM
and TE. In this letter, we only consider the TM wave. In
this case, Maxwell’s equations can be simplified as[3]
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where ε0 and µ0 are the vacuum permittivity and perme-
ability, respectively, and εi = n2

i with the subscript i=1
and 2 identifying the scattering particles and gain media,
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respectively.
The four-level rate equations are as[3]
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where P is the polarization intensity obeying the follow-
ing equation:[3]

d2P

dt2
+ ∆̟l

dP

dt
+ ̟2

l P = κ∆NEz, (8)

where ∆̟l = 1/τ32+1/T2 is the FWHM linewidth of the
atomic transition; T2 is the mean time between dephas-
ing events; ∆N = N2 − N3, representing the population
inversion κ = (6πε0c

3)/(̟2
l τ32); N is the total popula-

tion obtained as N = N1+N2+N3+N4. The parameters
used in this work are T2=2×10−14 s, τ43=10−13 s, τ32=
10−10 s, τ21=10−12 s, N=3.3313×1024, ̟l=4.05×1015

Hz, and the corresponding wavelength λ0=465 nm. The
pumping pulse used in the numerical calculation is a
Gaussian pulse, which obeys the following equation:

Ez(t) = exp[−(t − t0)
2/T 2] · cos(ωt), (9)

where t0 = 1 fs, T=5×10−13 s, and ω= 4.05 × 1015 Hz.
In the calculations, the refractive index of the scat-

tering particles is set to 2.5 and the radius is set to 60
nm. The calculated spectra at different pumping rates
are shown in Fig. 1(a). When the pumping rate (Wp)
is relatively small (∼6×1010 s−1), the emission spectrum
has a width of about 6.5 nm (centering at 464 nm) and
the peak intensity is quite small. As the pumping rate
increases, the emission spectrum becomes narrower and
the peak intensity increases. As the pumping rate further
increases, new peaks appear in the emission spectrum.
As shown in Fig. 1(b), the wavelengths of new peaks de-
pend on the pumping rate (Wp). At the pumping rate of
9×1010 s−1, the peak wavelength λ3 is 464 nm. When Wp

is increased to 4×1011 s−1, two distinct peaks are seen in
the emission spectrum, that is, one λ4=471 nm and the
other λ2=461 nm. When Wp reaches 9×1012 s−1, the
peaks move to λ1=457 nm and λ5=471 nm, respectively.
As the pumping rate continues to increase, more peaks
appear while some peaks also disappear. The results
agree with the experimental results of Van Der Molen et

al.[15]. Moreover, this phenomenon is due to the multi-
ple eigenmodes in the strongly disordered random media
and the different lasing thresholds of every eigenmode.
In the above simulation, the mode of the wavelength
at λ3=464 nm first reaches the lasing threshold with
the pumping rate increasing from a very small value.
Then, it produces a peak in the emission centered at
464 nm. As the pumping rate increases, more and more
modes (λ1, λ2, λ4, and λ5) reach their lasing thresh-
old successively. However, like in a conventional laser,

Fig. 1. (Color online) (a) Emission spectra at different
pumping rates 6×1010 (red), 7×1010 (green), 8×1010 (blue),
and 9×1010 s−1 (pink); (b) normalized emission spectra at
different pumping rates 9×1010 (red), 4×1011 (blue), and
9×1012 s−1 (green). (n2=2.5)

mode competition still exists in a random laser. There-
fore, only the modes that advance in the competition can
survive stably and be amplified. The other modes sup-
pressed in the competition will be hidden or disappear
in the spectra.

To clarify the influence of the refractive indices of the
scattering particles on random lasing, we select three
refractive indices, namely, 1.5, 2, and 2.5, respectively.
Figure 2 shows the dependence of peak intensity and
FWHM on pumping rate. Figure 2(a) illustrates the
peak intensity and FWHM varying with the pumping
rate at the refractive index of 2.5. As shown, when
the pumping rate is relatively small (smaller than lasing
threshold), the peak intensity is small and changes slowly
with pumping rate. Moreover, the FWHM is relatively
large. When the pumping rate is increased beyond a cer-
tain value (lasing threshold), the peak intensity exhibits
exponential growth. Simultaneously, FWHM decreases
dramatically. The peak intensity and FWHM reach a
stable value when the pumping rate is further increased.
When the pumping rate is small, the FWHM increases,
because our pumping source is a 0.7-mm Gaussian pulse.
When the pumping rate is very small, no mode oscil-
lates. Therefore, the emission spectrum is the typical
spectrum of the pumping source. Here, we use the rate
equation to explain the results above. When the pump-
ing rate is small, the population inversion is small, and
hence, stimulated emission is weak. As pumping rate in-
creases, the population inversion increases and the stimu-
lated emission becomes stronger. The photo energy den-
sity increases. Therefore, the peak intensity increases.
However, the population inversion could not increase
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Fig. 2. (Color online) (a) Plots of peak intensity (red) and
FWHM (blue) varying with a pumping rate of n2=2.5; (b)
FWHM varying with the pumping rate of different refrac-
tive indices, namely, 1.5 (black), 2 (red), and 2.5 (blue); (c)
normalized peak intensity varying with the pumping rate of
different refractive indices, namely, 1.5 (black), 2 (red), and
2.5 (blue).

without limiting the finite electronics in the atomic sys-
tem. Hence, the peak intensity will be limited in a range,
which is why the peak intensity will saturate.

We also calculated the emission spectra with the refrac-
tive indices of 1.5 and 2. According to the comparison of
the results, the change trend is consistent with the trend
of the spectra with a refractive index of 2.5. Therefore,
we do not show the results here. To obtain the influence
of the scattering media’s refractive indices on random
lasing, we show the peak intensity and the FWHM vary-
ing with the pumping rate at different refractive indices
in Figs. 2(b) and (c), respectively. Here, we normalize
the peak intensity for careful observation. Lasing thresh-
old can be defined using many methods. Ito et al. first
measured the curve of the spectral width of lasing emis-

sion varying with the pumping energy. Then, they found
a pumping energy at which the spectral width became
half of its maximum value. Such pumping energy was
defined as the lasing threshold[24]. Using this method,
we get the lasing threshold of the three curves in Fig.
2(b). As shown, the lasing thresholds of the three kinds
of refractive indices are the pumping rates at the three
points c, b, and a, which we define as Wc, Wb, and
Wa, respectively. Apparently, we can get the expression
Wc > Wb > Wa. In this letter, we also use the traditional
method to determine the lasing threshold based on the
curves of the peak intensity varying with pumping rate.
Using the threshold values shown in Fig. 2(c), we can
get the three lasing thresholds of the refractive indices
of 1.5, 2, and 2.5, which are denoted as Wp1, Wp2, and
Wp3, respectively. Obviously, they obey the expression
Wp1 > Wp2 > Wp3. The two methods imply that the
larger the refractive index of the scattering particles, the
smaller the lasing threshold. When the refractive index
of the scattering particles increases, the scattering inten-
sity of particles becomes larger. The photons are more
likely to be confined in the system and form closed-loop
oscillation. Therefore, the loss of the open system and
the lasing threshold are smaller.

In our experiment, we chose Rh6G as the gain medium
and the Al particles as scattering medium. First, we
evenly dispersed some Rh6G into a certain volume of
glycol solution. Then, we added some Al particles into
the solution. The concentrations of Al and Rh6G are
0.0015 and 0.02 mol/L, respectively. Here, we used gly-
col as a dispersant because the viscosity of the solution
was relatively large. Therefore, the scattering particles
can be evenly distributed in the solution.

Before the experiment, we first placed the sample into
an ultrasonic oscillator for 30 min. Then, we poured the
sample into a 1-mm-thick cuvette to form the quasi-2D
disordered medium. The sample was then pumped us-
ing an optical parametric oscillator (OPO) whose center
wavelength is 480 nm, pulse width is ∼7 ns, and repeti-
tion rate is 10 Hz. The laser was focused into the solution
using a lens whose focal length is 100 mm. The spectrum
was obtained using a monochromator (SP2750, Prince-
ton Instrument). The experimental scheme is shown in
Fig. 3.

Figure 4(a) shows three typical spectra measured by a
monochromator at pumping energies of 0.05, 0.61, 1.82,
and 3.61 mJ, respectively. The diagram shows that the
emission spectrum is wide when the pumping energy is
small (0.05 and 0.61 mJ). When the energy is increased
to 1.82 mJ, an obvious peak appears in the spectrum,

Fig. 3. Experimental setup.
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Fig. 4. (Color online) (a) Typical spectra of different pump-
ing energies at 0.05, 0.61, 1.82, and 3.61 mJ; (b) peak intensity
(blue) and FWHM (red) varying with pumping energy.

indicating a lasing action. Then, the peak intensity of
the spectrum increases and the FWHM decreases. The
dependence of peak intensity and FWHM on pumping
energy is shown in Fig. 4(b). When energy is lower
than 0.5 mJ, the peak intensity is small and FWHM is
large. When the energy is larger than 0.5 mJ, the peak
intensity exhibits an exponential growth and FWHM de-
creases dramatically. When the pumping energy reaches
1.5 mJ, the FWHM of the spectrum reaches a certain
value and remains stable, but the peak intensity still
increases. When the energy reaches 2.5 mJ, the peak
intensity exhibits saturation. Comparing Figs. 4 and 2,
we can conclude that the experimental results agree with
the theoretical ones.

In conclusion, using the FDTD algorithm, we numeri-
cally solve Maxwell’s equations and four-level rate equa-
tions and determine the dependence of the refractive
indices of the scattering particles on random lasing in a
2D strongly disordered medium. The calculation results
show that in low dimensional systems, the larger the
difference of refractive indices between the scattering
and background media, the stronger the feedback and
the smaller the lasing threshold. We also confirm the
existence of mode competition in a random laser. Based
on the theoretical results, we perform an experiment.
However, in contrast with the 2D system in the theoret-
ical simulation, the sample system is leakier because it
is more open. Hence, comparing the experimental and
theoretical results quantitatively is difficult. Moreover,
the experimental results agree with the calculated results

qualitatively. These findings may be helpful in the real-
ization of thin-film random lasers and planar waveguides
with disorder.
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